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Abstract—Conventional military planning systems construct plankJsing carefully limited forms of inter-agent communicatjo
with very limited flexibility. In the future, military planwill evolve the agents develop agreements on their future coordinated
into a much more expressive, contingent form. This papecrites behavior and also develop highly contingent plans (partial

how Honeywell’s distributed Coordinator agents reason wthoom- . . . ; .
plex domains to construct and execute highly contingentld@he policies) that specify what actions they should take in aewid

agents operate in a very dynamic environment in which campl¥ariety of possible futures. As mission execution proceeub
hierarchical tasks can arrive unpredictably and the agehéve to the tasks yield varying outcomes, the agents must rapidly,

build coordinated joint plans on the fly, while execution q@eds. continually coordinate and adapt their plans.

Using carefully limited forms of inter-agent communicatiothe &\ o\, rent solution combines restricted forms of inter-
agents develop agreements on their future coordinated \behand

rely on those agreements to build highly contingent plarert@ ~ agent coordination agreements with dynamic, probalulisti
policies) that specify what actions they should take in aewidriety ~projections of possible future worlds in the form of Markov
of possible futures. As mission execution proceeds and#iks yield Decision Problems (MDPs). By carefully guiding and pruning
varying outcomes, the agents must rapidly, continuallyrdioate the projection, or unrolling, of the MDP model of possible

and adapt their plans. The result is a distributed multi4aigsystem :
capable of building and flexibly executing complex, highimtingent future states, our GORDINATOR agents attempt to focus their

coordinated mission plans. decision-making attention on the partial plans with thenbig
probability of being useful. The MDP formulation allows our
1. INTRODUCTION COORDINATOR agents to produce highly contingent plans

Conventional military planning systems construct plarthwiin the form of partial policies, specifying what actions to
very limited flexibility; often there is only a baseline opertake in all the possible future states explored so far. Novel
ational plan with a few hand-crafted contingency branchéschnical elements of our@RDINATOR agents include their
that essentially amount to deploying reserved assets whability to exploit problem structure to dramatically reéuthe
otherwise remain unused. In the future, as automated plgnncomplexity of future planning, their methods for guidingeth
systems become more sophisticated and military operatidd®P unrolling process, and their ability to continue unirajl
become more automated, military plans will evolve into during mission execution.
much more expressive, contingent form. Plans will be boilt t The result is a distributed multi-agent system capable of
account, ahead of time, for operational tasks that takeingry building and flexibly executing complex, highly-contingen
time, have varying levels of success, and should be combingsbrdinated mission plans.
in widely different ways depending on what earlier tasksd(an
adversaries) have accomplished. Constructing such gmntin 2 THE COORDINATORS PROBLEM
plans in a distributed coalition environment and coordirat
the distributed execution of those plans will become much Our work is being done in the context of the DARPA-
harder than current coalition activities. The DARPOGR- funded @ORDINATORS program, which aims to identify,
DINATORS program is exploring the core computational issuggototype, and evaluate technical approaches to schecaria
that underlie exactly these problems. managing distributed activity plans in dynamic environtsen

This paper describes how Honeywell's distributedd®- As a motivating example, consider the following scenario. A
DINATOR agents reason about complex domains to constrdeistage has been taken and might be held in one of two
and execute highly contingent plans. The agents operatepissible locations. Rescuing the hostage requires thdt bot
a very dynamic environment in which complex hierarchicaiossible locations are entered by special fosiesiltaneously
tasks can arrive unpredictably and the agents have to bulid the activities to move personnel and materiel into place
coordinated joint plans on the fly, while execution proceedare pursued, delays may occur or actions intended to achieve

precursor objectives may have unexpected results (eig., fa
ure). GOORDINATOR agent systems will be associated with
the various human participantsOORDINATOR agents should
monitor the distributed plans and manage them as the situati
evolves, to increase their effectiveness and make them more
likely to succeed.



In general, a set of GORDINATOR agents is meant to work experiments, we treat quality as non-normalized utilitye (w
together to maximize the reward gained by the group aswdll use the terms “utility” and “quality” pretty much inter
whole. In other words, the problem is to compute an effectivdhangeably).
joint policy for the agent society, in which the actions taken To determine the overall utility of a C-TAMS execution
by one agent can depend on the state of the group adrace, we must have a mechanism for computing the quality
whole, not just the local state of that agent. The agents arktasks (composite actions) from the quality of their chefal
time-pressured: each agent must make timely action desisi&cvery task in the hierarchy has associated with it a “quality
during execution. Furthermore, the problem must be solmedaccumulation function” (QAF) that describes how the qualit
a distributed fashion. of its children are aggregated up the hierarchy. The QAFs

Although this is a problem of joint action, the problentombine both logical constraints on subtask execution amd h
solving is necessarily distributed, for reasons both di&dimal quality accumulates. For example, a :MIN QAF specifies that
and practical. The definitional reasons include the fact thall subtasks must be executed and must achieve some non-zero
each agent has only a partial, local model of the problemuality in order for the task itself to achieve quality, ame t
and the agents are prohibited (for organizational readoms) quality it achieves is equal to the minimum achieved by its
building a complete joint model of the situation. The preati subtasks. The :SYNCSUM QAF is an even more interesting
reasons include the sheer scope of the problem to be solvedse. Designed to capture one form of synchronization acros

Each agent's partial problem model (aka domain modelpents, a :SYNCSUM task achieves quality that is the sum
includes the actions that the agent can execute, which afeall of its subtasks that start at the same time the earliest
stochastic, rather than deterministic, and some of th@msti subtask starts. Any subtasks that start after the first pne(s
its peers can perform. The problem model also provideial cannot contribute quality to the parent task.
information about the rewards that the society as a whole wil The quality of a given execution of a C-TAMS task network
receive for reaching various states. This model is notcstatis the quality the execution assigns to the root node of thle ta
the agent can receive information about action outcomes amgtwork. C-TAMS task networks are constrained to be trees
problem model updates during execution. Therefore, ageatsng the subtask relationships, so there is a unique roosevh
must be able to manage and reformulate policies reactivelyquality is to be evaluated. C-TAEMS task networks are require

to have a deadline on their root nodes, so the notion of the
3. C-TAMS end of a trace is well-defined. One may be able to determine

COORDINATORs researchers have jointly defined a commasounds on the final quality of a task network before the end
problem domain representation based on the original TAEM$the trace, but it is not in general possible to determiree th
language [1]. The new language, C-T/AEMS [2], provides a sguality prior to the end, and it may not even be possible to
mantically sound subset of the original language, reptésgn compute useful bounds.
mUlti-agent hierarchical tasks with stochastic outcomed a Traditional p|anning |anguage5 model interactions betwee
complex hard and soft interactions. Unlike other hierarahi agents and the state of their environment through predondit
task representations, C-TAMS emphasizes complex re@soriAd postconditions. In contrast, C-TAMS does not model
about the utility of tasks, rather than emphasizing intéoas environmental state change at all: the only thing that chang
between agents and the state of their environment. state is the task network. Without a notion of environment

C-TAEMS permits a modeler to describe hierarchicalltate, in C-TAMS task interactions are modeled by “nontloca
structured tasks executed by multiple agents. A C-TAMS taglfect” (NLE) links indicating inter-node relationshipsch as
network hasnodesrepresentingasks(complex actions) and enablement, disablement, facilitation, and hindrance.
methods(primitives)! Nodes are temporally extended: they Figure 1 illustrates a simple version of the two-agent
have durations (which may vary probabilistically), and mapostage-rescue problem described earlier. The whole atiagr
be constrained by release times (earliest possible st@nmt$) shows a global “objective” view of the problem, capturing
deadlines. Methods that violate their temporal Conswmld pr|m|t|ve methods that can be executed by different agghts (
zero quality (and are said to hat@iled). At any time, each and B). The @ORDINATORS agents ar@ot given this view.
C-TAMS agent can be executing at most one of its metho@isstead, each is given a (typically) incomplete “subjeztiv
and no method can be executed more than once. view corresponding to what that individual agent would be

A C-T/EMS model is a discrete stochastic model: metkyvare of in the overall problem. The subjective view spesifie
ods have multiple possible outcomes. Outcomes dictate $gubset of the overall C-TAMS problem, corresponding to the
duration of the method, itsquality, and itscost Quality is parts of the problem that the local agent can directly cbote
constrained to be non-negative, and duration must be ageinteto (e.g., a method the agent can execute or can enable for
greater than zero. Cost is not being used in the current wogfother agent) or that the local agent is directly affected b
Quality and cost are unitless, and there is no fixed scheme ferg., a task that another agent can execute to enable ohe of t
Combining them into utilities. For the initial @RDINATORS local agent’s tasks)_ In Figure 1, the unshaded boxes itelica

N _ _ _ _ the subjective view of agent-A, who can perform the prinitiv

The terminology is somewhat unfortunate, since conveati®firN plan- . . . "
ners refer to their composite actions asthodsand their primitives as methods Move-into-Position-A and Engage-A. The “enable
operators. link indicates a non-local effect dictating that the Mower
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Figure 1. A simple C-TAMS task network for two agents, illustratingreof the representation features. Some details
have been omitted for brevity.

Position-A method must be completed successfully befage thlternative). Furthermore, an agent can always abort agdeth
agent can begin the Engage-A method. The diagram also illtisat it is executing, and choose to start a different metisad.
trates that methods may have stochastic expected outcontles;branching factor is never less than two at every time tick
for example, agent-B’s Move-into-Position-B method has ia a full consideration of the (single-agent) problem.

40% chance of taking 25 time units and a 60% chance OfMuIti—agent C-TAEMS MDPs are even worse. If one were
taking 35 time units. The :SYNCSUM QAF on the Engagg formulate a centralized @RDINATORS problem directly
task encourages the agents to perform their subtasksngtaris an MDP, the action space would have to be a tuple of
at the same time (to retain the element of surprise). assignments of actions to each agent. Each agent’s policy
could be dependent on all the possible actions that the other
4. SOLUTION APPROACH MARKOV DECISION PROCESSES  gagents could choose, and all the outcomes they could receive

Given a C-T/EMS task network with stochastic metholyaturally this causes an explosion in the state space of the
outcomes, we can frame the objective @RDINATORS prob- problem. Beyond compl_exity, the_re are other reasons we
lem as a multi-agent Markov Decision Process (MDP) [3 -annot construct th_e optimal multl-agent MDP_O@_?D'NA'
Briefly, an MDP is akin to a finite state machine, except th ORs problems are tlme-constramgd _and truly dls_trlbu_tedheac
transitions are probabilistic, rather than deterministimon- COORDINATOR agent gets only a limited subjective view and
deterministic. Agents may also receive reward (which may Belimited time to build and execute its plans, so forming
either positive or negative) for entering some states.cgly, 2 Perfectly optimal, centralized joint policy is not fedsib
this reward is additive over any trajectory through the estaf Urthermore, |nfqrmat|o_n securlt_y policies may prevert th
space (some adjustments are needed in the case of MDPENts from sharing their local views completely.
infinite duration). The solution to an MDP ismolicy — an ~ Therefore, we have a developed a distributedlo®DINA-
assignment of action choice to every state in the MDP — th&®R agent system that tries to retain the principled advantages
maximizesexpected utility Expressing the GorbINATORs Of an MDP-based approach while supporting truly distridute
problem as an MDP provides a sound theoretical basis feperations and information hiding, in a time-adaptive nenn
decision-making and action under uncertainty. Furtheemofach agent builds partial MDP for its local subjective prob-
there are relatively simple, efficient algorithms for finglinlem, to support its own decision-making about what actions
optimal policies. However, the state space size of the MDE®ethods) it should perform. The partial MDP is incremegtal
can be enormous. extended as more deliberation time is available to the agent

A single COORDINATOR agent's C-TAEMS task model SO that it becomes complete and locally-optimal if suffitien
specifies dinite-horizonMIDP. The problems are finite-horizontime is available.
because C-TAMS problems have finite duration, with no Because each agent's subjective view may not accurately
looping or method retries. However, the MDP tends to bmnvey how local method quality contributes to the overall
quite large for even modest-sized C-TAMS problems becausam mission quality, simply solving local MDPs for optimal
of the branching factor associated with uncertain outcomgmlicies is not sufficient. We must have the agents communi-
and because of the temporal component of the probleoate to share information about their plans and expectgtamn
For example, even a single applicable method with thréleat agents whose problems interact can coordinate efédgti
possible durations and three possible quality levels gigea To that end, our agents also have a coordination/negatiesio
branching factor of nine. In addition, time is a critical asp pability that allows them to efficiently reach joint agreertse
of TZEMS problems: methods consume time and NLEs caout how they will coordinate over interactions portiorfis o
have associated delays (so WAIT is often a useful actidhe full C-TAMS problem.



5. PARTIAL MDPs: “I NFORMED UNROLLING” »

We refer to the process of converting a C-TAMS prc
into an MDP problem as “unrolling,” because it invc 12 e ;—:-‘—'Ti:i:ii:i:
projecting forward from an initial state (where no met T T T
have been executed) to imagine future possible states 10t R 1
C-TAMS network in which some methods have beenex T
at particular times and have received particular outc S gf e i
The core unrolling algorithm is thus a simple state- < -
enumeration process where an MDP state is expanc I‘g 6 R A
creating the successor stats that result from each of tregigt 3 o
action choices and their outcomes. These successor st 4} [ —O— testI-AGENT1 (informed—urrolie] ' | ! ]
added to arppenlistof un-expanded states, and the pre || == test1-AGENTL (pure-kauai) : : :
ideally continues until the openlist is empty and the full | | T e E'F:‘J?;Tf;u;;‘“’”e” O |
state space has been enumerated. —6— test1-AGENTS (informed-unroller) 11 1

Since full enumeration of even single-agent C-T/ oL ACENTS (urediava) | a1
MDPs is often impractical, we have developed a tech 10° 10" 10° 10° 10° 10°

for heuristically-guiding the enumeration of a subspacéh time (seconds)

full MDP. Our informed unroller(IU) algorithm prioritizes the Figure 2: The Informed Unroller can find near-optimal
openlist of states waiting to be unrolled based on an estimat policies much faster than building the complete
of the likelihood that the state would be encountered when MDP.
executing the optimal policy from the initial state. Thecintis
to guide the unrolling algorithm to explore the most-prdeab
states first. of the initial state(s) and heuristics to generate a stdisgace
One cannot determine the probability of reaching a stafi@m which a policy can be abstracted. A find-and-revise
without considering the policy followed by the agent. Therelgorithm finds a state in the network for which the current
fore, the IU intersperses policy-formulation (using thdlBan value estimate is inaccurate, and revises the value for that
backup algorithm) with unrolling. This means that we must bstate (e.g., by generating successors, and propagatinglthe
able to find an (approximately) optimal policy for partial MD functions backwards in standard MDP fashion).
state spaces, which means we must have a heuristic to use tQur technique differs from the general case, and its in-
assign a quality estimate to leaf nodes in our search that glances, in substantial waysAO* generates a state subspace
not represent complete execution traces. We have devebpggbm which the optimal policy can be provably derived. The
suite of alternative heuristics for estimating interméelistate |U, on the other hand, executes online, and might lack enough
quality, since the problem of finding a good heuristic is guitiime to enumerate such a state subspace even if it knew gxactl
difficult. which states to include. The IU is an anytime algorithm,
Early results from our evaluation of the |U algorithm againsunlike ZAO*, which runs offline. For this reason, the IU
a complete solution of (small) MDPs are promising. For exarmakes no claims about policy optimality; indeed, it is nagm@v
ple, in Figure 2 we show a comparison of the performance gifiaranteed to generate a closed policy.
the informed unroller against the complete unrolling pesce  The general find-and-revise algorithm family can provide
In these small test problems, the informed unroller is able guarantees weaker than thoselodO*, but those guarantees
find a high-quality policy quickly and to return increasingl rely on having an admissible heuristic value function fates
effective policies given more time. This allows the IU-agenthat have not been fully explored. However, even if we had
to flexibly trade off the quality and timeliness of its polisi an admissible heuristic, it is not at all clear that the U
The IU approach is related to the “approximate dynamihould use it. An admissible heuristic will tend to push the
programming” algorithms discussed in the control theorgt ampolicy expansion to explore states where ipassible that the
operations research literature [4]. These approachesedeptimum will be found, in order that we not miss the optimum.
approximate solutions to MDP-type problems by estimatinglowever, the 1U is operating in a time-pressured domain. So
in various ways, the “cost to go” in leaf nodes of a limitedwe should not be encouraging the system to move towards
horizon portion of the full state space. While our explaatdf promising unexplored areas — that will tend to leave the igen
the literature is not yet complete, initially we believetthekey with a policy that is broad but shallow, and virtually guaes
difference in our IU approach is the notion of time-dependethat it will “fall off policy” during execution. Instead ofdmis-
horizon control and unrolling-guidance (vs. just estimatof sibility, we must find a heuristic function that will causeeth
leaf-node reward for policy derivation). agent to tend to build policies that trade off consideratioh
The IU method is a special case of the find-and-revisggtimal choice against completeness/robustness of theypol
algorithm schema [5] (which is a generalization of algarith It is possible that this heuristic should be time-dependent
such asLAO* [6]). LDF S-family algorithms use knowledge as the agent runs out of time for policy development, the



IU’s heuristic should focus more on robustness and less system would be expected to perform less-optimally, given
optimality. the restrictions on its search for joint policies, but theteyn
should still be robust and capable of establishing cootdoha

behavior on the portions of the problem over which agents are
When we consider multiple @ORDINATOR agents, the willing to communicate.

problem expands to finding an optimg@int policy. This
problem is challenging because: ACKNOWLEDGMENTS
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general very large, so the product space of joint policié¥ARPA/IPTO COORDINATORS program and the Air Force
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6. COORDINATION

To address these practical limitations, oUD@RDINATOR
agents do not try to solve the full optimal joint policy prebi.
Instead, they make _several simp!ifying assumptiqns artd(re_s REFERENCES
tEe formsh ?f solutions they W|I|| be_ abllef' _tO fmld’.makmal] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, Shang,
the search for an approxmat_e y-optimal joint SO_Ut!On ;o K. Decker, and A. Garvey, “The T/AEMS white paper,” University
tractable. Our agents use limited forms of negotiation t0 s Massachussetts, Amherst, Computer Science Departmait, Rep., Jan.
tablish a set of inter-agent commitments. These commitsnenzt ,%4993' v B. Horling. 3. Phelos. R. P. Gold 4 R °C

. . . Boddy, B. Horling, J. Phelps, R. P. Goldman, an . ¥éng “C-
represept a p?‘rtlal set of agreement_s about which agen{ ]ST/EMS language specification,” Apr. 2005, unpublished; latsé from
performing which methods, at what times. The agents then this papers authors.
rely on those commitments when generating their partial MOB] M. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic
policies. The commitments are used as both assumptions (e.g Programming John Wiley & Sons, 1994. ,

ther agent has agreed to perform a method that will ena[0 e P Bertsekas, "Dynamic programming and suboptimahtas: A
ano ) g g e p survey from ADP to MPC,” inProc. Conf. on Decision and Conttol
my action) and as obligations (e.g., | have agreed to perform 200s.
a method that will enable another agent). Assumptions sueh B. Bonet and H. Geffner, “Learning depth-first search: ified approach

as remote enablement agreements can be built into the locall® N€Uistic search in deterministic and non-determiiséttings, and
its application to MDPs,” inProceedings of the Sixteenth International

problem model by including “prOXY_” methoqis that enable the conference on Automated Planning and Schedylng-ong, S. F. Smith,
local method at the agreed-upon time. Obligations to execut D. Borrajo, and L. McCluskey, Eds., Jun. 2006, pp. 142-151.

methods by a particular time are met by adding extra rewdfd E A. Hans_en anq S. Zilbe,rstgi_n,_ “LAO: a heuristic seaabgorithm that
to the MDP in states that satisfy the commitment. These two ggisszsogggol”s with loops,Artificial Intelligence vol. 129, no. 1-2, pp.
mechanisms bias the MDP policy-generation process towards ’ '
policies that rely upon and satisfy the agent's commitments
There are several ways in which this approach may result in
sub-optimal behavior. For example, the actual optimalgyol
set may not adhere to a static set of commitments: to behave
optimally, agents may have to adjust which enablements they
will accomplish depending on how prior methods execute. To
mitigate this weakness, our agents deliberate and negotiat
continually, so that they can manage and adapt their commit-
ment set and policies on the fly as methods execute.

7. CONCLUSIONS

Our multi-agent coordination system uses limited forms of
negotiated commitments to bias partial-MDP policy defoat
The resulting agents are able to very quickly create initial
coordinated policies, improve those policies given moiéede
eration time, and adapt the policies as new informatiowvesti
including both method outcomes and new C-TAMS problems.

In the context of coalition operations, where differentrage
may not be able to share some portions of their intentions,
these techniques can still be applied. Enforcing infororati
security or privacy policies could be done on a local-agent
level, preventing the agent from establishing commitments
about private intentions (e.g., not telling other agentt ih
intends to execute a particular method or task). The resylti



