
Working Notes of the AAAI Spring Symposium on Model-Based Validation of Intelligence
Stanford, CA March 2001

Monte-Carlo Simulation for Automatic Synthesis of Verified Real-time
Controllers

Extended Abstract

Christopher W. Geib and Robert P. Goldman and David J. Musliner
Honeywell Laboratories

{geib,goldman,musliner}@htc.honeywell.com

Introduction

This extended abstract outlines work in progress on

the use of Monte Carlo simulation in the automatic

construction of verified real-time controllers. This is

part of ongoing work on the CIRCA architecture. As

such, we will first briefly outline the CIRCA architec-

ture and its method for constructing controllers and

then outline the problem and our solution approach.

Background on CIRCA

The CIRCA architecture is intended to provide real-

time, intelligent, verifiable control for autonomously-

operating systems. It has been applied to real-time

planning and control problems in several domains in-

cluding mobile robotics, simulated autonomous air-

craft, space probe challenge problems (Musliner &

Goldman 1997) and controlling a fixed-wing model air-

craft (Atkins et al. 1998). To build controllers for

these kinds of domains, CIRCA must be able both to

carry out unrestricted (i.e., intractable) computation

and support hard real-time response guarantees.

To this end, the CIRCA architecture has three cen-

tral components. First, the adaptive mission planner

decomposes the mission into more manageable sub-

tasks that can be planned in detail. Second, the Con-

troller Synthesis Module (CSM) (see Figure 1) builds

and verifies individual controllers for the subtasks pro-

vided by the mission planner. Third, operating con-

currently with the mission planner and the CSM the

real-time subsystem (RTS) reactively executes the gen-

erated controllers and enforces guaranteed response

times. The focus of this paper is the CSM and the

efficient generation of verifiable controllers.

Subsystem
Real-Time

AI Subsystem

Adaptive Mission
Planner

Controller Synthesis
Module

Figure 1: Basic CIRCA architecture.

To build discrete reactive controllers the CSM takes

as input a description of the processes in the world

and the available control actions represented as a set

of state transitions with worst case time characteris-

tics. From this description, CIRCA incrementally con-

structs a controller and checks it for correctness using

a timed automaton verifier.

The real-time controllers that CIRCA builds sense

features of the system’s state (internal and external)

and execute reactions based on the current state. The

CIRCA RTS runs a memoryless reactive controller.

This means the controller synthesis problem is the pro-

cess of choosing a control action for each reachable state

(feature-value assignment) of the system. This is not

as simple as it sounds. The set of reachable states is

not fixed, since the correct choice of control actions can

render some states (un)reachable.

Since the CSM only builds safe controllers, a critical

issue is making failure states unreachable. This is ac-

complished by the process of preemption. A transition

t is preempted in a state s if and only if some other

transition t′ from s must occur before t could possibly

occur. In controller synthesis, the CSM preempts a

failure state by choosing a control action for the prior

state that is fast enough to guarantee that it will occur

before a transition to the failure state. In the abstract,

the controller synthesis algorithm is as follows:

1. Choose a reachable state (at the start of controller

synthesis, only the initial states are reachable).

2. Choose a control action (an action or a reliable tem-

poral) for that state.

3. Invoke the verifier to confirm that the (partial) con-

troller is safe.

4. If the controller is not safe, use information from the

verifier to direct backtracking.

5. If the controller is safe, recompute the set of reach-

able states.

6. If there are no unplanned reachable states (reach-

able states for which a control action has not been

chosen), terminate successfully.

7. If unplanned reachable states remain, loop to step 1.

This is only a sketch of the actual controller syn-

thesis algorithm. The interested reader is referred to

(Musliner, Durfee, & Shin 1995; Goldman et al. 1997)

for a more detailed description of the algorithm and

related issues. However, even this high level algorithm

is sufficient to illustrate the problem we are addressing.

The Problem

The problem with this algorithm lies in the require-

ment that it plan actions for all reachable states of

the world. This actually presents two constraints on

controller synthesis: bounded rationality and bounded

reactivity.(Musliner, Durfee, & Shin 1993)

First consider bounded rationality. Even within the

small subproblems that the mission planner produces

there may still be more world states than it is rea-

sonable for the system to plan for. There may also

be possibilities that are unreasonable to plan for. Con-

sider the case where there are two events, each of which

is unlikely. While it may be reasonable for CIRCA to

plan for each of these unlikely events individually, is it

reasonable for CIRCA to plan for the case where both

of these very unlikely events happen?

Second, even if we have the time to build a con-

troller for all of the world states, this controller may

not be able to make the kind of guarantees that we

want. There may simply be too many states for the

controller to monitor. In this case, while the controller

was looking for one very unlikely event a critical transi-

tion to failure is happening. Thus even if the controller

synthesis algorithm could determine actions for each of

the states, trade offs would have to be made. The con-

troller would not have time to monitor for all of the

states and still maintain its real-time guarantees.

Simply put, in some domains, we don’t have the time

to build or even execute controllers that cover all the

possible states of the world. The question then is, if we

cannot consider all of the world states, which should we

consider? Given the controller synthesis algorithm, we

can view this as two simple algorithmic questions: 1)

How should we order the reachable states of the world

to plan actions? 2) When should we stop considering

states of the world?

The intuitive answers to these questions are: 1) plan

for the most likely states first, and 2) stop when the

cost of planning for the state exceeds the expected

value of having the plan.

Solution Details

With this approach, the central problem becomes one

of determining which world states are the most likely

given the current controller. We are not the first people

to look at this problem of ordering states that CIRCA

considers on the basis of the state’s likelihood. Atkins,

Li and others (Li et al. 1999) have been looking at

finding a closed form solution for calculating the state

probabilities. Generating these closed form solutions

requires making simplifying assumptions, and results

in approximate solutions.

We believe that Monte-Carlo simulation of the world

and controller will have a number of advantages over

the closed form solution. Monte-Carlo simulation will

allow us to more accurately model the semantics of

the real-time executive. It will allow us to move to

incrementally computing the state probabilities reduc-

ing the runtime of the computation. Finally we believe

Monte-Carlo simulation will produce a more accurate

approximation of the probabilities in the case of some

transition types.

As in Li’s work, Monte-Carlo simulation requires a

transition rate distribution for each transition. Rather

than having a single worst-case time for each transition,

we now assume we have a function that provides the

probability of the transition as a function of time. The

simulation is done by starting in the “initial state” and

running fixed time length simulations of the system.

We will simulate both the world’s transitions and the

actions of the controller to determine two statistics.

First, we compute the “time in state”. That is, by

doing a timed simulation of the world and controller we

will be able to collect the amount of time spent in each

state. Since we know the number of simulation runs

and the total time of each run, we can compute the time

in each of the frontier states and divided this by the

total simulated time giving a time-weighted probability

of being in one of the unplanned states. This statistic

is used to order the unplanned states for consideration

by the CSM

Second, we compute an absolute probability of ever

reaching a state. For each run we mark the states that

the simulation traverses. Each state is marked only

once per simulation run (even if the simulation enters

the state multiple times). Again by dividing by the to-

tal number of runs we are provided with the probability

that a run will ever enter a given state.

The simulation algorithm is:

1. Start in the initial state.

2. If the state has been planned for

• Compute the time for the controller to act.

• For each other transition out of the state, sample

from the transition rate distribution to determine

how long it will take for the transition to happen.

• Choose the action or transition with the minimum

time to transition and execute it.

• Remove the time for the transition from the clock.

3. Else If the state is unplanned for or is a failure state

• Mark the state as visited on this run.

• Add the time remaining in the run to the state’s

counter

• End the run.

4. If there is more time loop to step 2

A large number of individual simulation runs are

combined by the running counters and the final proba-

bilities are generated by dividing the cumulative statis-

tics against the known totals. These statistics can then

be used to order the unplanned states to consider the

most likely first. Further, if the absolute probability

of entering a failure state rises above a chosen thresh-

old we trigger backtracking in the controller synthesis

algorithm.

As a whole, this approach will move CIRCA away

from absolute guarantees that no failure state will be

reached to probabilistic guarantees of no failure. By

the time of the symposium we hope to have results of

this approach to report.

Acknowledgments

This material is based upon work supported by the

Space and Naval Warfare Systems Center – San Diego

under Contract No. N66001–00–C–8039. Any opinions,

findings, conclusions, or recommendations expressed in

this material are those of the authors and do not nec-

essarily reflect the views of DARPA, the U.S. Govern-

ment, or the Space and Naval Warfare Systems Center

– San Diego.

References

Atkins, E. M.; Miller, R. H.; VanPelt, T.; an d

W. B. Ribbens, K. D. S.; Washabaugh, P. D.; and

Bernstein, D. S. 1998. Solus: An autonomous aircraft

for flight control and trajectory planning research.

In Proceedings of the American Control Conference

(ACC), volume 2, 689–693.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D.;

and Boddy, M. S. 1997. Dynamic abstraction plan-

ning. In Proc. National Conf. on Artificial Intelli-

gence, 680–686.

Li, H.; Atkins, E.; Durfee, E.; and Shin, K. 1999.

Resource allocation for a limited real-time agent using

a temporal probabilistic world model. forthcoming.

Musliner, D. J., and Goldman, R. P. 1997. CIRCA

and the Cassini Saturn orbit insertion: Solving a

prepositioning problem. In Working Notes of the

NASA Workshop on Planning and Scheduling for

Space.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.

CIRCA: a cooperative intelligent real-time control ar-

chitecture. IEEE Trans. Systems, Man, and Cyber-

netics 23(6):1561–1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.

World modeling for the dynamic construction of real-

time control plans. Artificial Intelligence 74(1):83–

127.

