
Appears in Working Notes of the 2nd Workshop on Real-Time Tools
August 1, 2002, Copenhagen, DenmarkVeri�er Trace-Directed Backjumping forController SynthesisRobert P. Goldman, Michael J. S. Pelican, David J. Muslinerfgoldman,musliner,pelicang@htc.honeywell.comHoneywell Laboratories3660 Technology DriveMinneapolis, MN 55418Abstract. Model-checking veri�cation systems can return counterex-ample traces when desired properties are shown to be violated. Unfortu-nately, it can be very di�cult to determine how to repair a system designfrom a counterexample trace. In this paper, we describe an automatictechnique for extracting repair candidates from counterexample traces,in the context of an on-the-y algorithm for timed automaton controllersynthesis (reactive planning). By mapping a counterexample trace backinto a set of search stack entries (forming a nogood), we identify decisionsthat may be causing the veri�cation failure. These nogoods allow us touse backjumping search in the controller synthesis. Backjumping searchis guaranteed to visit fewer nodes than conventional chronological back-tracking search, and in many problems visits far less. We present data toshow that, in large controller synthesis problems, backjumping may pro-vide substantial speedup by removing large portions of the search space,without sacri�cing completeness.1 IntroductionOrdinarily, model-checking veri�ers are used as part of an iterative, manual sys-tem design process. Once an initial system design is complete, the designer asksa model-checker to verify that some property holds over all possible traces ofsystem execution. If the model-checker �nds that this property does not hold, itproduces a counterexample trace demonstrating how the system can violate thedesired property. Unfortunately, it is very di�cult for people to use these tracesto guide design revisions. Havelund argues that tools are needed to support hu-man examination of error traces, and cites as one example the message sequencecharts provided by SPIN [10]. Simmons also reports \...it is usually quite di�cultto diagnose the error directly from the counterexample" [18]. Several correspon-dents agree that counterexamples, especially long counterexamples, are hard tocomprehend [16, 17].We use timed automaton veri�cation as an integral, on-line component ofa fully-automatic controller synthesis system. The synthesis system is based onheuristic search: the algorithm makes heuristic decisions about what controlleractions should be taken in particular states, and uses a veri�er to con�rm that

these control choices will prevent certain types of failure. When the veri�er �ndsthat failure is reachable, it can return a trace illustrating a path to failure. Bymapping this failure trace onto the search stack choice points, our controllersynthesis system is able to pinpoint the decisions that are responsible for failure,and backjump to revise the most recent implicated decision. This backjump-ing avoids revisiting more-recent but irrelevant decisions, and can considerablyimprove the e�ciency of the search without sacri�cing completeness.The method described here was developed for controller synthesis in thecontext of the CIRCA intelligent control architecture [14]. However, the methodshould be generally useful in any \on-the-y" controller synthesis method, suchas that of Tripakis and Altisen [19].We begin by briey reviewing our controller synthesis method, the CIRCAController Synthesis Module. We then review backjumping, a technique for di-rected backtracking that is guaranteed to search fewer nodes than chronologicalbacktracking, without sacri�cing the complete enumeration of consistent (i.e.,safe) solutions. The correct behavior of backjumping depends on correctly formu-lating eliminating explanations, or \nogoods," when an inconsistency is detectedin the search process. After describing backjumping, we present the method forextracting nogoods from counterexample traces produced by a veri�er (the corecontribution of this paper). We present performance results from several domainsillustrating the resulting reduction in search. We conclude with comparisons withrelated work and some summary remarks.2 CIRCA Controller SynthesisCIRCA's Controller Synthesis Module (CSM) automatically synthesizes real-time reactive discrete controllers that guarantee system safety when executed byCIRCA's Real-Time Subsystem (RTS), a reactive executive with limited mem-ory and no internal clock. The CSM takes in a description of the processes in thesystem's environment, represented as a set of time-constrained transitions thatmodify world features. Transitions have preconditions describing when they areapplicable, as well as temporal characteristics. For example, Fig. 1 shows severaltransitions taken from a CIRCA problem description for controlling the Cassinispacecraft during Saturn Orbital Insertion [7, 15]. Discrete states of the systemare modeled as sets of feature-value assignments. Thus the transition descrip-tions, together with speci�cations of initial states, implicitly de�ne the set ofpossible system states.The CSM reasons about both controllable and uncontrollable transitions:Action transitions represent actions performed by the RTS. Associated witheach action is a worst case execution time, an upper bound on the delaybefore the action occurs.Temporal (uncontrollable) transitions represent uncontrollable processes.Associated with each temporal transition is a lower bound on its delay. Tran-sitions whose lower bound is zero are referred to as events, and are handled

ACTION turn_on_main_engine ;; Turning on the main enginePRECONDITIONS: '((engine off))POSTCONDITIONS: '((engine on))DELAY: <= 1EVENT IRU1_fails ;; Sometimes the IRUs break without warning.PRECONDITIONS: '((IRU1 on))POSTCONDITIONS: '((IRU1 broken));; If the engine is burning while the active IRU breaks,;; we have a limited amount of time to fix the problem before;; the spacecraft will go too far out of control.TEMPORAL fail_if_burn_with_broken_IRU1PRECONDITIONS: '((engine on)(active_IRU IRU1) (IRU1 broken))POSTCONDITIONS: '((failure T))DELAY: >= 5Fig. 1. Example transition descriptions given to CIRCA's CSM.specially for e�ciency reasons. Transitions whose postconditions include theproposition (failure T) are called temporal transitions to failure (TTFs).Note that each transition is an implicit description of many transitions in anautomaton model. Each of these transitions is enabled in any discrete state thatsatis�es its preconditions, and disabled everywhere else.If a temporal transition leads to an undesirable state, the CSM may plan anaction to preempt the temporal:De�nition 1 (Preemption). A temporal transition may be preempted in a(discrete) state by planning for that state an action which will necessarily occurbefore the temporal transition's delay can elapse.Note that successful preemption does not ensure that the threat posed by atemporal transition is handled; it may simply be postponed to a later state (ingeneral, it may require a sequence of actions to handle a threat). A threat ishandled by preempting the temporal with an action that carries the system toa state which does not satisfy the preconditions of the temporal.The controller synthesis (planning) problem can be posed as choosing a con-trol action for each reachable discrete state (feature-value assignment) of thesystem. Note that this controller synthesis problem is simpler than the generalproblem of synthesizing controllers for timed automata. In particular, CIRCA'scontrollers are memoryless and cannot reference clocks. This restriction has twoadvantages: �rst, it makes the synthesis problem easier and second, it ensuresthat the synthesized controllers are actually realizable in the RTS.Algorithm 1 (Controller Synthesis)1. Choose a state from the set of reachable states (at the start of controllersynthesis, only the initial states are reachable).

2. For each uncontrollable transition enabled in this state, choose whether ornot to preempt it. Transitions that lead to failure states must be preempted.3. Choose a single control action or no-op for this state.4. Invoke the veri�er to con�rm that the (partial) controller is safe.5. If the controller is not safe, use information from the veri�er to direct back-jumping.6. If the controller is safe, recompute the set of reachable states.7. If there are no \unplanned" reachable states (reachable states for which acontrol action has not yet been chosen), terminate successfully.8. If some unplanned reachable states remain, loop to step 1.The search algorithm maintains the decisions that have been made, alongwith the potential alternatives, on a search stack. The algorithmmakes decisionsat two points: step 2 and step 3.The CSM uses the veri�er module after each assignment of a control action(see step 4). The veri�er is used to con�rm both that failure is unreachable andthat all the chosen preemptions will be enforced. This means that the veri�er willbe invoked before the controller is complete. At such points we use the veri�eras a conservative heuristic by treating all unplanned states as if they are \safehavens." Unplanned states are treated as absorbing states of the system, and anyveri�cation traces that enter these states are regarded as successful. Note thatthis process converges to a sound and complete veri�cation when the controllersynthesis process is complete. When the veri�er indicates that a controller isunsafe, the CSM will query it for a path to the distinguished failure state. Theset of states along that path provides a set of candidate decisions to revise. Wedescribe this process in detail in the following sections.3 BackjumpingAlthough the search algorithm includes heuristic guidance (using our own heuris-tic, based on [12]), it may still need to explore a number of possible controllerdesigns (action assignments) before �nding a safe controller. If the heuristicmakes a poor decision at a state, the search process will lead to dead ends, andit must back up to that state and resume searching with a di�erent decision.The simplest approach to \backing up" is chronological backtracking : undoingthe most recent decision in the search and trying an alternative. However, insome problems, it is possible to determine that the most recent decision was notrelevant to reaching the dead end. Backjumping exploits such information byskipping over irrelevant decisions and backtracking directly to the most recentrelevant decision.An example taken from the CIRCA controller synthesis problem may helpunderstand why backjumping is useful. Consider the problem shown in Fig. 2.The search algorithm has assigned control actions to the states in the orderindicated by the state numbering. The planned actions and the un-preemptedtemporal transitions are shown by the heavy lines (dashed for actions, double-solid for temporals). At this point, the system has planned an action for state 1

3

2

1 4

BADFig. 2. An example showing the utility of backjumping.
Backjump to here1

2

3

4

....Dead End....Fig. 3. A search tree corresponding to the controller synthesis problem in Fig. 2that will take it to state 2, an action from state 2 that will take it to state 3, andan action for state 3 that will return the system to its initial state. Unexploredalternatives are shown as fainter dotted lines. There are two alternative actionsfor state 1 and three each for states 2 and 3. The planner has also permitted anonvolitional transition to carry the system from the initial state to state 4.Unfortunately, when trying to choose an action for state 4, we will reach animpasse. All three possible action choices will lead us toBAD. Worse, we cannotsimply do no-op, because if we do, there is a nonvolitional transition that willcarry us to BAD. We have reached a dead-end in our search, and must back up.A conventional, chronological backtracking algorithm would now return tostate 3, and attempt to assign a new control action to it. However, it should beclear from Fig. 2 that this is a waste of time. No revision to the choices for states2 or 3 will solve the problem, and it will take us an arbitrarily large amount of

time to �nd this out. It would be far better for us simply to \jump" back tostate 1 and try to �nd a better solution to the problem posed by that state, inthis case by preempting the temporal to state 4. A search tree corresponding tothis problem is given as Fig. 3. The wasted search is shown as shaded triangles.Note that the subtrees corresponding to these triangles may be arbitrarily deep.Backjumpingmakes this kind of intelligent, guided revision possible. It can beshown that backjumping is complete and never expands more nodes than depth-�rst search. Backjumping was developed by Gaschnig [6], but our discussionfollows the presentation by Ginsberg [8], which is admirably elegant and lucid.We have modi�ed Ginsberg's discussion somewhat to make it �t our searchalgorithm more closely.De�nition 2 (Constraint Satisfaction Problem (CSP)). A constraint sat-isfaction problem is a tuple, (I; V) with I a set of variables; for each i 2 I thereis a set Vi = fvi;0; vi;1 : : : vi;nig of possible values for the variable i. There aresome constraints that limit the acceptable assignments of values to variables.In the case of the CIRCA controller synthesis problem, the variables in ques-tion are the preemption decisions and the action assignments. The constraintsare implicitly de�ned by the scenario de�nition, and whether or not an assign-ment is consistent is determined by consulting the timed automaton veri�er.E.g., in Fig. 2 there is no assignment to the action variable for state 4 that isconsistent with the assignment of not-preempted to the nonvolitional from state1 to state 4.De�nition 3 (Partial Solution). Let (I; V) be a CSP. By a partial solutionto the CSP, we mean an ordered subset J � I, and an assignment of a valueto each i 2 J . A partial solution corresponds to a tuple of ordered pairs, whereeach ordered pair hi; vi assigns the value v to i. For a partial solution, P , we willwrite P for the set of variables assigned values by P .In general, we cannot assign arbitrary values to variables | some of thevalues are eliminated by constraints:De�nition 4 (Eliminating Explanation). Given a partial solution P to aCSP, an eliminating explanation for a variable i is a pair hv; P i where v 2 Viand S � P . That is, i cannot take the value v because of the values assigned byP to the variables in S. The set of eliminating explanations for i is Ei.De�nition 5 (Solution Checker). A solution checker for a CSP is a functionC : P; i; v! f>g[Ei. That is, the solution checker, given a partial assignmentP and an assignment to a variable i 62 P will return either > (the assignmentsatis�es all complete constraints), or will return an eliminating explanation forhi; vi.Now we can describe chronological backtracking depth-�rst search using thepreceding de�nitions. We present this to provide a point of comparison thatshould make backjumping easier to understand. The description of depth-�rst

search using eliminations is simply a dual of the conventional description: insteadof the algorithm tracking the remaining values for the variables, this versiontracks the values eliminated from the variables' domains.Algorithm 2 (Elimination-based Depth-�rst Search) Given a CSP P anda solution checker C:1. P := ; and Ni := ; for all i 2 I. P will record the current partial solution,and Ni is the set of values eliminated from the domain of i at this stage ofthe search.2. If P is a complete solution, return it.3. Select a variable i 2 I � P .4. Let S := Vi �Ni, the set of remaining possibilities for i.5. If S = ;, backtrack: if P = ; return failure, otherwise, let hj; vji be the lastentry in P . Remove hj; vji from P , Ni := ;, add vj to Ej and go to step 4.6. If S 6= ;, choose a value, vi;k 2 S to assign to i.7. If C(P; i; vi;k) = > then P := P [fhi; vi;kig and go to step 3.8. If C(P; i; vi;k) 6= top then add vi;k to Ni and go to step 4.Note that depth �rst search makes only the most trivial use of the solutionchecker and the eliminating explanations. Indeed, for the purposes of depth-�rst search, the solution checker need only be a boolean function, returningeither > or ?.Now we can present the de�nition of backjumping. For backjumping we willrequire the solution checker to provide more speci�c information.De�nition 6 (Solution Checker for Backjumping). For an assignmentthat violates some constraints, we require C(P; i; v) to return some Ei(v) � P ,such that the set of values assigned to the variables Ei(v), taken together withthe assignment hi; vi, violates some constraint of the problem.As one would expect, the smaller the explanations, the better. In the worst case,where Ei(v) = P for all i and v, backjumping degenerates to depth-�rst search.Note that these eliminating explanations can be interpreted as logical im-plications. Given an eliminating explanation, e.g., Ei(v) = fj; k; lg � P forhi; vi, we can interpret this as a clause :hi; vi hj; vji; hk; vki; hl; vli, wherehj; vji; hk; vki; hl; vli 2 P . With some abuse of notation, we will write such clausesas: :hi; vi Ei(v). This interpretation will be helpful in understanding how thebackjumping algorithm updates eliminating explanations.Algorithm 3 (Backjumping) Given a CSP P and a solution checker C:1. P := ; and Ei := ; for all i 2 I. P will record the current partial solution.Ei will be a set of pairs of the form hvi;k; Ei(k)i where vi;k 2 Vi is a valueeliminated from the domain of i and Ei(k) � P is an eliminating explanationfor hi; vi;ki. The set of variables mentioned in the eliminating explanationsfor i, is Ei � Sfkjvi;k2VigEi(k).2. If P is a complete solution, return it.

3. Select a variable i 2 I � P .4. Let S := Vi �Ei, the set of remaining possibilities for i.5. If S = ;, backjump: if Ei = ; return failure, otherwise, let hj; vji be themost recent entry in P such that j 2 Ei. Remove hj; vji from P , Ei := ;,add hvj; Ei � ji to Ej and go to step 4.6. If S 6= ;, choose a value, vi;k 2 S to assign to i.7. If C(P; i; vi;k) = > then P := P [fhi; vi;kig and go to step 3.8. If C(P; i; vi;k) 6= > then add hvi;k; C(P; i; vi;k)i to Ei and go to step 4.Remarks To understand the description of an actual backjump, in step 5 ofAlg. 3, recall the interpretation of eliminating explanations as implications.When backjumping we have eliminated all elements of Vi, so we have Ei(v),or :hi; vi Ei(v), for all v 2 Vi. Implicitly, we also have Wv2Vihi; vi. Fromthese, we can use resolution to conclude Wv2Vi Ei(v), the Ej update computa-tion performed in step 5.4 Eliminating Explanations from Veri�er TracesAs we indicated earlier, CIRCA uses a timed automaton veri�cation program asits solution checker (see Def. 5). The key to applying backjumping in our con-troller synthesis is to be able to translate counterexample traces into eliminatingexplanations, per Def. 4 and Def. 6.The model used by the CIRCA Controller Synthesis Module is not directlyinterpretable by a timed automaton veri�er. Since the CIRCA execution sys-tem does not use clocks, the CSM reasons only about the discrete state space.Nevertheless, one must reason about clocks in order to determine whether aCIRCA controller is safe. Accordingly, the CIRCA CSM translates its (partial)controllers into timed automata, and then submits these automata to the veri�er.We do not have space here to fully describe this translation process, whichwe have written about elsewhere [9]. However, there are three facts about thistranslation relevant to our discussion here. First, there is a function from thelocations of the timed automatonmodel to the discrete states in the CSMmodel,CSMstate(�). Second, there is a function from the jumps in the timed automatonmodel to the transitions of the CSM, CSMtrans(�). These are both computablein constant time. Third, the timed automaton models of our controllers containa distinguished failure location.The counterexample traces generated as a result of checking CIRCA plansfor safety have the following form:s0 t0! s1 t1! s2 t2! : : : sn tn! sfailEach si is made up of a location and a clock zone (which represents an equiv-alence class of clock valuations for the same location). In the following, we willonly be concerned with the location. Since each si corresponds to a single lo-cation, we will not be fussy about the notation. The state s0 is a distinguished

initial state that does not correspond to any CSM state. The state s1 will map tosome CSM initial state. sfailis a state whose location is the distinguished failurelocation.The transition sn tn! sfail will correspond to one of two classes of failure:either tn is a transition to failure in the CIRCA model or tn corresponds to anonvolitional, nv the CSM has chosen to preempt.We extract an eliminating explanation from the counterexample using a func-tion from state-jump-state triples, si ti! si+1 into search decisions. This func-tion is de�ned over the CSM states and transitions, �i � CSMstate(si); �i+1 �CSMstate(si+1) and �i � CSMtrans(ti), as follows:De�nition 7. Eliminating Explanations from Counterexamplesf(�i; �i; �i+1) = 8>>>>>>>>><>>>>>>>>>:f�(�i)g if �i is a TTF and �i+1 = sfail.f�(�i); $(�i; �i)g if �i 2 �(�i) and �i+1 = sfail.f�(�i)g if �i is an action or an event(see Sect. 2) and �i+1 6= sfail.f$(�i; �i)g if �i is a temporal transition(and not an event) and �i+1 6= sfail.Remarks The �rst and second pairs of cases are mutually exclusive and covering(�i+1 = sfail versus �i+1 6= sfail) and the cases in each pair are also mutuallyexclusive and covering.In this de�nition, we make use of two classes of search decision: action de-cisions, �(�), and preemption decisions, $(�; �). Each of these search decisionscorresponds to an entry in the search stack. The domain of an action decision,�(l) is the set of actions enabled in state l. Preemption decisions are boolean,$(l; t) = >(resp., ?) means that t must be (need not be) preempted in l.Using the function of Def. 7, a timed automaton veri�er can act as a solutionchecker for backjumping, per Def. 6. When the veri�er returns a counterexampletrace, we apply the mapping given in Def. 7 to the trace, remove duplicate deci-sions, and then remove �(s) from the result to get a nogood. Search using theseeliminating explanations proceeds per Alg. 3. Note that the pre-checks (used toavoid unnecessary calls to the veri�er) also return eliminating explanations.There are three conditions required of the solution checker to ensure thesoundness and completeness of Alg. 3 [8]. Our approach meets all three:1. Correctness: If C(P; i; v) = > then every complete constraint1 is satis�edby P [fhi; vig.Proof: The set of completed constraints is determined by the reachablesubspace of the state space. That is, a set of variable assignments in the CSMsearch is consistent i� the sub-space generated by those variable assignments1 A constraint is complete if all its participating variables have been assigned a value.

is safe. If the timed automaton veri�er we use is correct the correctnesscondition is met.)2. Completeness:Whenever P[fhi; vig is consistent, P 0 � P and P 0[fhi; vigis not consistent, then C(P 0; i; v)\(P 0�P) 6= ;. That is, if P can be extendedby assigning v to i and P 0 cannot be, at least one element of P 0 � P isidenti�ed as a possible reason for the problem.Proof: Corresponding to P [fhi; vig there is a timed automaton subspacethat is safe. Corresponding to P 0 [fhi; vig there is a timed automaton sub-space that is not safe. Ergo, there must be a trace of the following form:s0 t0! s1 t1! : : : sm tm! : : : sn tn! sfailwhere sm corresponds to a state that was not yet planned in P (note that smmay or may not be equal to sn, s1, or both), otherwise a correct veri�er wouldhave found the path when checking P [fhi; vig. Examining the mappinggiven in Def. 7, we can see that applying that mapping to sm tm! sm+1 willadd to the nogood at least one variable in P 0 � P .)3. Concision: Only one reason is given why a particular variable cannot havethe value v in a partial solution P .Proof: The explanations are generated by our timed automaton veri�er. Foreach safety veri�cation failure, the veri�er will generate a single counterex-ample, from which Def. 7 will generate a single nogood.)It follows that Alg. 1, using backjumping according to the solution checkingmechanism proposed here, will be sound and complete.5 Test ResultsBackjumping is critical to making challenging domains feasible. We can assessthe results of trace-directed backjumping by comparing against the CSM perfor-mance when backjumping is disabled, and the system only engages in chrono-logical backtracking. Forcing the CSM to use chronological backtracking is fairlysimple: we still call the same veri�er to assess whether the current plan is ac-ceptable, but if the veri�er �nds failure is reachable we do not return a culprit,instead simply backtracking one step and changing the last decision on the stack.For example, on one of our mid-sized regression testing domains, the chrono-logical backtracking version requires 105 backtracks and 1.5 seconds to solve theproblem, while the backjumping version uses only 32 backjumps and 0.9 seconds.Larger domains show much more dramatic improvements. For example, on oneof our larger testing domains the chronological backtracking version performsover 14,000 backtracks before timing out after 20 minutes and failing to solvethe problem2. The backjumping version makes only 25 well-directed backjumpsand solves the problem in 9.5 seconds.2 Experience shows that, if a solution has not been found by then, the search is typ-ically hopelessly lost. These tests were performed on a 750MHz Pentium machinerunning Linux.

These performance improvements can also be seen in a closely-related systemdeveloped at the University of Michigan [4]. Their search algorithmwas recentlyextended to include backjumping. Their evaluation of backjumping on a largeset of randomly-generated domains also illustrates the value of this technique.6 Related WorkBuccafurri, et. al. [2] also attempt to tackle the problem of automatically ex-tracting repair information from counterexamples. They describe a techniquefor adding automatic repair to model checking veri�cation. They use abduc-tive model revision to alter a concurrent program description in the face of acounterexample. The class of systems and repairs they consider seem most ap-propriate for handling concurrency protocol errors, especially involving mutualexclusion and deadlocks, and rather less appropriate for control applications likethe ones that interest us.Tripakis and Altisen [19] have independently developed an algorithm verysimilar to ours. They use the term \on-the-y" for algorithms that generatetheir reachable state spaces at the same time as they synthesize the controller. AIplanning algorithms, including the original CIRCA planning/controller synthesisalgorithm [13, 14] have typically been on-the-y in this sense. We believe thata suitably-modi�ed backjumping scheme could be pro�tably incorporated intotheir algorithm.Backjumping provides a restricted form of guidance to backtracking, us-ing limited record-keeping. There are other algorithms that provide more guid-ance, at the expense of more record-keeping. Three of the most signi�cant aredynamic backtracking [8], dependency-directed backtracking (sometimes calledTruth Maintenance Systems or TMSes) [5], and multiple-context (assumption-based) systems (ATMSes) [11, 3]. Dynamic backtracking is similar to backjump-ing, but additionally permits the search algorithm to salvage some of the workdone between the backjump point and the point at which failure is detected.However, for many applications, this seems to be counterproductive, sometimesbehaving exponentially worse than simpler approaches [1]. It is now generallyagreed that for almost all applications TMSes provide a poor return for theirspace cost. On the other hand, ATMSes have been widely used in diagnosticapplications. It is possible that they would be useful here.7 ConclusionsWe have presented a technique for extracting repair candidates from counterex-ample traces in a controller synthesis application. These repair candidates takethe form of entries in a search stack, and allow us to use backjumping search inthe controller synthesis. In di�cult controller synthesis problems, backjumpingprovides a crucial advantage. Our technique should be directly usable in otheron-the-y controller synthesis and AI planning methods. We hope that it willalso point the way to improvements in other uses of model-checking veri�cation.

References[1] Baker, A. B. The hazards of fancy backtracking. In Proceedings of the TwelfthNational Conference on Arti�cial Intelligence (1994), AAAI Press/MIT Press,pp. 288{293.[2] Buccafurri, F., Eiter, T., Gottlob, G., and Leone, N. Enhancing modelchecking in veri�cation by AI techniques. Arti�cial Intelligence 112 (1999), 57{104.[3] deKleer, J. An assumption-based TMS. Arti�cial Intelligence 28 (1986), 127{162.[4] Dolgov, D. A., and Durfee, E. H. Satis�cing strategies for resource-limitedpolicy search in dynamic environments. In Proc. First Int'l Joint Conf. on Au-tonomous Agents and Multi-Agent Systems (AAMAS) (July 2002).[5] Doyle, J. A truth maintenance system. Arti�cial Intelligence 12, 3 (1979),231{272.[6] Gaschnig, J. Performance measurement and analysis of certain search algo-rithms. Tech. Rep. CMU-CS-79-124, Carnegie-Mellon University, 1979.[7] Gat, E. News from the trenches: An overview of unmanned space-craft for AI. In AAAI Technical Report SSS-96-04: Planning with In-complete Information for Robot Problems (Mar. 1996), I. Nourbakhsh,Ed., American Association for Arti�cial Intelligence. Available athttp://www-aig.jpl.nasa.gov/home/gat/gp.html.[8] Ginsberg, M. L. Dynamic backtracking. Journal of Arti�cial Intelligence Re-search 1 (1993), 25{46.[9] Goldman, R. P., Musliner, D. J., and Pelican, M. S. Exploiting implicitrepresentations in timed automaton veri�cation for controller synthesis. In Hy-brid Systems: Computation and Control (HSCC 2002), C. J. Tomlin and M. R.Greenstreet, Eds., no. 2289 in LNCS. Springer Verlag, Mar. 2002, pp. 225{238.[10] Havelund, K., May 2002. personal communication.[11] McDermott, D. V. Contexts and data dependencies: A synthesis. IEEE Trans-actions on Pattern Analysis and Machine Intelligence PAMI-5, 3 (1983), 237{246.[12] McDermott, D. V. Using regression-match graphs to control search in planning.Arti�cial Intelligence 109, 1 { 2 (Apr. 1999), 111{159.[13] Musliner, D. J., Durfee, E. H., and Shin, K. G. CIRCA: a cooperativeintelligent real-time control architecture. IEEE Transactions on Systems, Manand Cybernetics 23, 6 (1993), 1561{1574.[14] Musliner, D. J., Durfee, E. H., and Shin, K. G. World modeling for thedynamic construction of real-time control plans. Arti�cial Intelligence 74, 1 (Mar.1995), 83{127.[15] Musliner, D. J., and Goldman, R. P. CIRCA and the Cassini Saturn or-bit insertion: Solving a prepositioning problem. In Working Notes of the NASAWorkshop on Planning and Scheduling for Space (Oct. 1997).[16] Pecheur, C., May 2002. personal communication.[17] Rangarajan, M., May 2002. personal communication.[18] Simmons, R., Pecheur, C., and Srinivasan, G. Towards automatic veri�ca-tion of autonomous systems. In Proceedings of the 2000 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (2000), IEEE.[19] Tripakis, S., and Altisen, K. On-the-y controller synthesis for discreteand dense-time systems. In Formal Methods 1999, J. Wing, J. Woodcock, andJ. Davies, Eds., no. 1708 in Lecture Notes in Computer Science. Springer Verlag,Berlin, 1999, pp. 233{252.

