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Abstract

We propose a framework for policy generation in continuous-
time stochastic domains with concurrent actions and eventsof
uncertain duration. We make no assumptions regarding the
complexity of the domain dynamics, and our planning algo-
rithm can be used to generate policies for any discrete event
system that can be simulated. We use the continuous stochas-
tic logic (CSL) as a formalism for expressing temporally ex-
tended probabilistic goals and have developed a probabilistic
anytime algorithm for verifying plans in our framework. We
present an efficient procedure for comparing two plans that
can be used in a hill-climbing search for a goal-satisfying
plan. Our planning framework falls into the Generate, Test
and Debug paradigm, and we propose a transformational ap-
proach to plan generation. This relies on effective analysis
and debugging of unsatisfactory plans. Discrete event sys-
tems are naturally modeled as generalized semi-Markov pro-
cesses (GSMPs). We adopt the GSMP as the basis for our
planning framework, and present preliminary work on a do-
main independent approach to plan debugging that utilizes
information from the verification phase.

Introduction
Realistic domains for autonomous agents present a broad
spectrum of uncertainty, including uncertainty in the occur-
rence of exogenous events and in the outcome of agent se-
lected actions. In order to ensure satisfactory performance
by a single agent, or a system of agents, in such domains,
we need to take the uncertainty into account when generat-
ing plans.

The problem of planning under uncertainty has been ad-
dressed by researchers in operations research, artificial in-
telligence (AI), and control theory, among others. Numer-
ous approaches have been proposed, but as Bresinaet al.
(2002) recently pointed out, current methods for planning
under uncertainty cannot adequately handle planning prob-
lems with either concurrent actions and events or uncertainty
in action durations and consumption of continuous resources
(e.g. power). In this paper we focus on domains with con-
current events and actions with uncertain duration/delay.We
present a framework for planning in such domains that falls
into the Generate, Test and Debug (GTD) paradigm pro-
posed by Simmons (1988).
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We limit our attention to planning domains that can be
modeled asdiscrete event systems. The state of such sys-
tems changes only at discrete time instants, which could be
either at the occurrence of an event or the execution of an ac-
tion. Many man-made dynamic systems (e.g. production or
assembly lines, air traffic control systems, and robotic sys-
tems) can be realistically modeled as discrete event systems.
We present a general algorithm for generating (partial) sta-
tionary policies for discrete event systems, only requiring
that we can generate sample execution paths for the systems.
The sample execution paths can be generated through dis-
crete event simulation (Shedler 1993).

Drummond & Bresina (1990) recognize the need for
maintenance and prevention goals in realistic planning prob-
lems, in addition to the traditional planning goals of achieve-
ment. We embrace their view, and adopt thecontinuous
stochastic logic(CSL) (Aziz et al. 2000; Baier, Katoen,
& Hermanns 1999) as a formalism for expressingtempo-
rally extendedgoals in continuous-time domains. Recent
advances in probabilistic verification have resulted in effi-
cient algorithms for verifying CSL properties of continuous-
time stochastic systems (Baier, Katoen, & Hermanns 1999;
Infante Ĺopez, Hermanns, & Katoen 2001; Younes & Sim-
mons 2002), but these results have not, to our best knowl-
edge, been used to aid probabilistic plan generation. The
work by Younes & Simmons is based on statistical sam-
pling techniques, and therefore handles any model that can
be simulated—in particular discrete event systems. In this
paper, we present ananytime(Dean & Boddy 1988) ver-
sion of that algorithm for a relevant subset of CSL. We also
present an efficient sampling-based algorithm for compar-
ing two plans that can be used in a hill-climbing search for
a satisfactory plan.

We propose atransformationalapproach to plan gener-
ation. The simulation traces generated during plan verifi-
cation can be used to guide plan repair. We recognize the
need for good search control in order to make the planning
algorithm practical. For this purpose, we adopt thegeneral-
ized semi-Markov process(GSMP) as a domain model. The
GSMP, first introduced by Matthes (1962), captures the es-
sential dynamical structure of a discrete event system (Glynn
1989). As the name suggests, GSMPs are a generalization
of semi-Markov processes (SMPs), allowing for the delay
of events and actions to depend not only on the current state
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of a system, but possibly on theentire pathtaken to that
state. The GSMP provides a natural mechanism for mod-
eling concurrency and uncertainty in the duration of actions
and events. We can view a GSMP as the composition of con-
current SMPs. When composing concurrent Markov pro-
cesses the result is a Markov process due to the memoryless
property of the exponential distribution, but compositionof
multiple SMPs requires a more complex model for the whole
than for the parts.

In contrast to most previous research on planning un-
der uncertainty, we choose to work with time as a contin-
uous, rather than discrete, quantity as this is a more realistic
model of time for real-time systems with concurrent asyn-
chronous events (Alur, Courcoubetis, & Dill 1993). Doing
so, we avoid the state-space explosion that comes from using
discrete-time models for domains that are inherently contin-
uous.

Our planning algorithm has been partially implemented
within the CIRCA framework (Musliner, Durfee, & Shin
1995).

Background
Current approaches to planning under uncertainty can be di-
vided roughly into distinct categories based on their repre-
sentation of uncertainty, how goals are specified, the model
of time used, and assumptions made regarding observability.

Two prevalent representations of uncertainty arenon-
deterministicand stochasticmodels. In non-deterministic
models, uncertainty is represented strictly logically, using
disjunction, while in stochastic models uncertainty is spec-
ified with probability distributions over the possible out-
comes of events and actions. The objective when planning
with non-deterministic models is typically to generate auni-
versal plan(Schoppers 1987) that is guaranteed to achieve
a specified goal regardless of the actual outcomes of events
and actions. A goal can be a set of desirable states as in the
work of Cimatti, Roveri, & Traverso (1998) and Jensen &
Veloso (2000), or a modal temporal logic formula as pro-
posed by Kabanza, Barbeau, & St-Denis (1997) and Pistore
& Traverso (2001).

Ginsberg (1989) questions the practical value of univer-
sal non-deterministic planning. His main concern is that the
representation of a universal plan is bound to be infeasibly
large for interesting problems. It is impractical, Ginsberg
argues, for an agent to precompute its response to every sit-
uation in which it might find itself simply because the num-
ber of situations is typically prohibitively large. In control
theory, Balemiet al. (1993) have proposed the use of Or-
dered Binary Decision Diagrams (Bryant 1986) as a com-
pact representation of supervisory controllers, and this rep-
resentation has more recently also been used in the AI com-
munity for non-deterministic planning (Cimatti, Roveri, &
Traverso 1998; Jensen & Veloso 2000). Kabanza, Barbeau,
& St-Denis (1997) address the time complexity problem by
proposing an incremental algorithm for constructing partial
policies that, if given enough time, produces a universal
plan, but they rely on domain-specific search control rules
for efficiency.

Probabilistic planning can be seen as an attempt to ad-
dress some of the complexity issues in non-deterministic
planning. By requiring a stochastic domain model, a prob-
abilistic planner has a more detailed model of uncertainty
to work with, and can choose to focus planning effort on
the most relevant parts of the state space. A plan may
fail because some contingencies have not been planned
for, but this is acceptable as long as the success proba-
bility of the plan is high. Drummond & Bresina (1990)
present an anytime algorithm for generating partial policies
with high probability of achieving goals expressed using a
modal temporal logic. Other research on probabilistic plan-
ning typically considers only propositional goals. Kushm-
erick, Hanks, & Weld (1995) and Lesh, Martin, & Allen
(1998) work with plans consisting of actions that are exe-
cuted in sequence regardless of the outcome of the previ-
ous actions. Conditional probabilistic plans (Blythe 1994;
Draper, Hanks, & Weld 1994; Goldman & Boddy 1994) al-
low for some adaptation to the situation during plan execu-
tion. In the work by Draper, Hanks, & Weld, this adapta-
tion is obtained by means of explicit sensing actions that are
made part of the plan.

Sampling techniques have been used for probabilistic plan
assessment by Blythe (1994) and Lesh, Martin, & Allen
(1998). Our approach differs from previous work using sam-
pling in that we never need to compute any probability es-
timates. Instead we rely on efficient statistical hypothesis
testing techniques, which saves significant effort.

Most of the work in planning under uncertainty assumes
a simple model of time, with time progressing in fixed dis-
crete steps at the occurrence of events or the execution of
actions. Such time models are not sufficient to accurately
capture the dynamics of many realistic real-time systems
with concurrent action and event delays. Musliner, Dur-
fee, & Shin (1995) view time as a continuous quantity,
and present a planning algorithm for non-deterministic do-
mains with a rich temporal model where action and event
delays are specified as intervals. Their domain model is ba-
sically a continuous-time GSMP. While both discrete-time
and continuous-time SMPs have been used as domain mod-
els in decision-theoretic planning (Howard 1971), GSMPs
have not previously been considered in a probabilistic or
decision-theoretic planning framework, as far as we know.
Planning with concurrent temporally extended actions in
discrete-time domains is considered by Rohanimanesh &
Mahadevan (2001), but they place restrictions on the ac-
tion dynamics so as to make the domain models semi-
Markovian.

Policy search aided by simulation has been successfully
applied to decision-theoretic planning with partially observ-
able Markov decision processes (Kearns, Mansour, & Ng
2000; Ng & Jordan 2000; Baxter & Bartlett 2001).

Planning Framework
We now present a general framework for probabilistic plan-
ning in stochastic domains with concurrent actions and
events. We will use a variation of the transportation domain
developed by Blythe (1994) as an illustrative example. The
objective of the example problem is to transport a package
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load-taxi(pgh-taxi, CMU)
drive(pgh-taxi, CMU, pgh-airport)
unload-taxi(pgh-taxi, pgh-airport)
load-airplane(plane, pgh-airport)

fly(plane, pgh-airport, msp-airport)
unload-airplane(plane, msp-airport)

load-taxi(msp-taxi, msp-airport)
drive(msp-taxi, msp-airport, Honeywell)

unload-taxi(msp-taxi, Honeywell)

Figure 1: Initial plan for transporting a package from CMU
to Honeywell.

from CMU in Pittsburgh to Honeywell in Minneapolis, and
with probability at least0.9 have the package arrive within
five hours without losing it on the way.

The package can be transported between the two cities by
airplane, and between two locations within the same city by
taxi. There is one taxi in each city. The Pittsburgh taxi is ini-
tially at CMU, while the Minneapolis taxi is at the airport.
There is one airplane available, and it is initially at the Pitts-
burgh airport. Given these initial conditions, Figure 1 gives
a sequence of actions that if executed can take the package
from CMU to Honeywell.

The plan in Figure 1 may fail, however, due to the ef-
fects of exogenous events and uncertainty in the outcome
of planned actions. The Minneapolis taxi may be used by
other customers while the package is being transported to
Minneapolis, meaning that the taxi may not be at the air-
port when the package arrives there. The package may be
lost at an airport if it remains there for too long without be-
ing securely stored. The plane may already be full when we
arrive at the airport unless we have made a reservation. Fig-
ure 2 gives a PDDL-like specification of the load-airplane
action. If the action is executed in a state where the atomic
proposition “have-reservation” is false, then there is a 0.1
probability of there not being room for the package on the
plane. Finally, there is uncertainty in the duration of actions
(e.g. drive and fly) and the timing of exogenous events.

Discrete Event Systems
The planning domain introduced above can be modeled as a
discrete event system. A discrete event system,M, consists
of a set of statesS and a set of eventsE. At any point in
time, the system occupies some states ∈ S. The system
remains in a states until the occurrence of an evente ∈ E,
at which point the system instantaneously transitions to a
states′ (possibly the same state ass). We divide the set
of events into two disjoint setsEa andEe, E = Ea ∪ Ee,
whereEa is the set of actions (or controllable events) andEe

is the set of exogenous events. We assume thatEa always
contains a null-actionǫ, representing idleness. A policy,π,
for a discrete event system is a mapping from situations to
actions.

Returning to the example problem, we can represent the
possibility of a taxi moving without us in it by two exoge-
nous events: move-taxi and return-taxi. Examples of actions
are given in the plan in Figure 1 (eg. load-taxi and drive).

A discrete event system ,M, controlled by a policy,π, is
a stochastic process, denotedM[π]. The execution history
of M[π] is captured by asample execution path, which is a
sequence

σ = s0
t0,e0

−→ s1
t1,e1

−→ s2
t2,e2

−→ . . .

with si ∈ S, ei ∈ E, andti > 0 being the time spent in
statesi before eventei triggered a transition to statesi+1.
We callti the holding time forsi.

Consider the example problem again. Say that the ac-
tion load-taxi(pgh-taxi, CMU) triggers in the initial state af-
ter 1 minute. The holding time for the initial state is1 in
this case. The triggering of the load-taxi action takes us
to a state where the package is in the Pittsburgh taxi. Say
that in this state, the event move-taxi(msp-taxi) triggersafter
2.6 minutes. We are now in a state where the Minneapolis
taxi is moving, and the holding time for the previous state
is 2.6. This sequence of states and triggering events repre-
sents a possible sample execution path for the transportation
domain.

Sample execution paths come into play when verifying
and repairing plans. For now, we make no assumptions
about the underlying dynamical model of a discrete event
system other than that we can generate sample execution
paths for the system through discrete event simulation. In
particular, we do not assume that the system is Markovian.
We present a general algorithm for planning with discrete
event systems using only the information contained in sam-
ple execution paths. We will later adopt a GSMP model of
discrete event systems, and this will help us better focus the
search for a satisfactory plan.

Problem Specification
A planning problem for a given discrete event system is an
initial states0 (or possibly a distributionp0(s) over states)
and a goal conditionφ. We propose CSL as a formalism for
specifying goal conditions. CSL—inspired by CTL (Clarke,
Emerson, & Sistla 1986) and its extensions to continuous-
time systems (Alur, Courcoubetis, & Dill 1993)—adopts
probabilistic path quantification from PCTL (Hansson &
Jonsson 1994).

The set of well-formed CSL formulas can be defined in-
ductively as follows:

• An atomic proposition,a, is a state formula.

• If φ is a state formula, then so is¬φ.

• If φi, i ∈ [1, n], are state formulas, then so isφ1∧. . .∧φn.

• If ρ is a path formula andθ ∈ [0, 1], thenPr≥θ(ρ) is a
state formula.

• If φ is a state formula, thenXφ (“next state”) is a path
formula.

• If φ1 and φ2 are state formulas andt ∈ [0,∞), then
φ1 U

≤t φ2 (“bounded until”) is a path formula.

In full CSL there are also “until” formulas without time
bound, but we require the time bound in our simulation-
based approach to guarantee that we need to consider only
finite-length sample execution paths. The time bound of
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(:action load-airplane
:parameters (?plane - airplane ?loc - airport)
:precondition (and (at pkg ?loc) (at ?plane ?loc) (not (moving ?plane)) (not (full ?plane)))
:delay 1
:effect (and (when (have-reservation)

(and (not (at pkg ?loc)) (in pkg ?plane) (moving ?plane)))
(when (not (have-reservation))

(probabilistic 0.9 (and (not (at pkg ?loc)) (in pkg ?plane) (moving ?plane))
0.1 (full ?plane)))))

Figure 2: PDDL-like specification of the load-airplane action in the example transportation domain.

an “until” formula serves as a planning horizon. In this
paper we will concentrate on CSL formulas of the form
φ = Pr≥θ(ρ) whereρ does not contain any probabilistic
statements. While the verification algorithm presented by
Younes & Simmons (2002) can handle nested probabilistic
quantification and conjunctive probabilistic statements,it is
not immediately obvious how to compare plans if we allow
such constructs in goal conditions.

The truth value of a state formula is determined in a state,
while the truth value of a path formula is determined over an
execution path. The standard logic operators have the usual
semantics. A probabilistic state formula,Pr≥θ(ρ) holds in
a states iff the probability of the set of paths starting ins
and satisfyingρ is at leastθ. The formulaXφ holds over a
pathσ iff φ holds in the second state alongσ. The formula
φ1 U

≤t φ2 holds overσ iff φ2 becomes true in some states
alongσ before more thant time units have passed andφ1 is
true in all states prior tos alongσ.

We can express the goal condition of the example problem
as the CSL formula

φ = Pr≥0.9(¬lost(pkg) U≤300 at(pkg, Honeywell)).

The problem is then to find a plan such thatφ holds in the
initial states0. The solution is a policy mapping situations
to actions. Next, we present techniques for generating and
repairing stationary policies,π : S → Ea.

Planning Algorithm
Algorithm 1 shows a generic procedure, FIND-PLAN , for
probabilistic planning based on the GTD paradigm. The pro-
cedure takes a discrete event systemM, an initial states0,
a CSL goal conditionφ, and an initial planπ0. The initial
plan can be generated by an efficient deterministic planner,
ignoring any uncertainty, or it can be a null-plan mapping
all states to the null-actionǫ. If the initial plan is given as a
sequence of events (as in Figure 1), then we derive a station-
ary policy by simulating the execution of the event sequence
and mappings to actiona whenevera is executed ins. In
the latter case we have a pure transformational planner (cf.
Simmons 1988). The planning algorithm is specified as an
anytime algorithm that can be stopped at any time to return
the currently best plan found.

The procedure VERIFY-PLAN returns true iffφ is satis-
fied in s0 by the stochastic processM[π]. BETTER-PLAN
returns the better of two plans. In the next two sections, we
describe how to efficiently implement these two procedures

Algorithm 1 Generic planning algorithm for probabilistic
planning based on the GTD paradigm.

FIND-PLAN (M, s0, φ, π0)
if VERIFY-PLAN (M, s0, φ, π0) then

return π0

else
π ⇐ π0

loop � returnπ on break
repeat

π′ ⇐ REPAIR-PLAN (π)
if VERIFY-PLAN (M, s0, φ, π′) then

return π′

else
π′ ⇐ BETTER-PLAN (π, π′)

until π′ 6= π
π ⇐ π′

using acceptance sampling. In the third section we show
how the information gathered during plan verification can
be used to guide plan repair.

Anytime Plan Verification
Younes & Simmons (2002) propose an algorithm for verify-
ing probabilistic real-time properties using acceptance sam-
pling. Their work shows how to verify CSL properties given
error boundsα andβ, whereα is the maximum probabil-
ity of incorrectly verifying a true property (false negative)
andβ is the maximum probability of incorrectly verifying
a false property (false positive). We adopt this approach,
but develop a true anytime algorithm for verification of CSL
properties of the formφ = Pr≥θ(ρ) that can be stopped at
any time to return a decision with a confidence level whether
φ holds or not. The more time the algorithm is given, the
higher the confidence in the decision will be.

Assume we are using the sequential probability ratio test
(Wald 1945) to verify a probabilistic propertyφ = Pr≥θ(ρ)
with an indifference region of width2δ centered aroundθ.
Typically we fix the error boundsα andβ and, givenn sam-
ples of whichd are positive samples, compute the fraction

f =
pd
1(1 − p1)

n−d

pd
0(1 − p0)n−d

with p0 = θ + δ andp1 = θ − δ. We acceptφ as true if

f ≤
β

1 − α
,
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rejectφ as false if

f ≥
1 − β

α
,

and generate an additional sample otherwise.
For an anytime approach to verification, we instead want

to derive error boundsα andβ that can be guaranteed if the
sequential probability ratio test were to be terminated after
n samples andd positive samples have been seen.

Givenn samples andd positive samples, we would accept
φ as true if we had chosenα = α0 andβ = β0 such that

f ≤
β0

1 − α0
(1)

holds. If, instead, we had chosenα = α1 and β = β1

satisfying the inequality

f ≥
1 − β1

α1
, (2)

then we would rejectφ as false at the current stage. What
decision should be returned if the test procedure was termi-
nated at this point, and what is the confidence in this decision
in terms of error probability?

We will from here on assume thatβi can be expressed as
a fraction ofαi; βi = γαi. We can think ofγ as being the
fraction β

α , with α andβ being the target error bounds for
the verification ofφ if enough time is given the algorithm.
We can acceptφ as true with probability of error at mostβ0

if (1) is satisfied. We have

f ≤
γα0

1 − α0
=⇒ 1 − α0 ≤

γα0

f
=⇒ α0 ≥

1

1 + γ
f

.

From this follows that if we had aimed for error boundsα =
1

1+γ/f andβ = γ
1+γ/f , then we would have acceptedφ as

true at this stage.
If (2) is satisfied, then we can rejectφ as false with prob-

ability of error at mostα1. In this case we have

f ≥
1 − γα1

α1
=⇒ fα1 ≥ 1 − γα1 =⇒ α1 ≥

1

γ + f
.

It now follows that if we had aimed for error boundsα =
1

γ+f andβ = γ
γ+f , then we would have rejectedφ as false

at this stage.
For the moment ignoring any decisions derived prior to

the current sample, if we need to choose between accepting
φ as true and rejectingφ as false at this stage, then we should
choose the decision that can be made with the lowest error
bounds (highest confidence). We choose to acceptφ as true
if

1

1 + γ
f

<
1

γ + f
, (3)

we choose to rejectφ as false if

1

1 + γ
f

>
1

γ + f
, (4)

and we choose a decision with equal probability otherwise.
Note that because we have assumed thatβi = γαi, if
αi < αj then alsoβi < βj , so it is sufficient to compare

theαi’s. If condition (3) holds, then the probability of error
for the chosen decision is at mostγ1+γ/f , while if condition

(4) holds the probability of error is at most1γ+f . We denote
the minimum of theαi’s at the current stage,min(α0, α1),
by α̌.

Now, let us take into account decisions that could have
been made prior to seeing the current sample. Letα(n) de-
note the lowest error bound achieved up to and including
thenth sample. Ifα̌ < α(n), assuming the current stage is
n + 1, then the decision chosen at the current stage with-
out considering prior decisions is better than any decisions
made at earlier stages, and should therefore be the decision
returned if the algorithm is terminated at this point. Other-
wise, a prior decision is better than the current, so we re-
tain that decision as our choice. We set the lowest error
bounds for stagen + 1 in agreement with the selected de-
cision:α(n+1) = min(α̌, α(n)).

For the sequential probability ratio test to be well defined,
it is required that the error boundsα andβ are less than12 .
It is possible that eitheřα or γα̌ violates this constraint if
γ 6= 1. If that is the case, we simply ignore the current de-
cision and make a random decision. This finalizes the algo-
rithm, summarized in pseudo-code as Algorithm 2, for any-
time verification of probabilistic properties. The result of the
algorithm, if terminated aftern samples, is the decisiond(n)

with a probability of error at mostβ = γα(n) if d(n) = true
andα = α(n) otherwise.

Figure 3(a) plots the error probability over time as the
plan in Figure 1 is verified for the example problem using
δ = 0.01 andγ = 1. The decision for all confidence lev-
els, except a few in the very beginning, is that the plan does
not satisfy the goal condition. The confidence in the deci-
sion increases rapidly initially, and exceeds0.99 within 0.08
seconds after199 samples have been generated.

Plan Comparison
We need to compare two plans in order to perform hill-
climbing search for a satisfactory plan. In this section
we show how to use a sequential test, developed by Wald
(1945), to determine which of two plans is better.

LetM be a discrete event system, and letπ andπ′ be two
plans. Given a planning problem with an initial states0 and
a CSL goal conditionφ = Pr≥θ(ρ), let p be the probability
thatρ is satisfied by sample execution paths ofM[π] starting
in s0 and letp′ be the probability thatρ is satisfied by paths
of M[π′]. We then say thatπ is better thanπ′ for the given
planning problem iffp > p′.

The Wald test is carried out by pairing samples for the
two processesM[π] andM[π′]. We now consider samples
of the form〈b, b′〉, whereb is the result of verifyingρ over
a sample execution path forM[π] (similarly for b′ andπ′).
We count samples only whenb 6= b′. A sample〈true, false〉
is counted as a positive sample because, in this case,π is per-
forming better thanπ′, while a sample〈false, true〉 counts
as a negative sample. Letp̃ be the probability of observing
a positive sample. It is easy to verify that ifπ andπ′ are
equally good, theñp = 1

2 . We should preferπ if p̃ > 1
2 . The

situation is similar to when we are verifying a probabilistic
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Algorithm 2 Procedure for anytime verification ofφ =
Pr≥θ(ρ) with an indifference region of width2δ.

VERIFY-PLAN (M, s, φ, π)
α(0) ⇐ 1

2 , d(0) ⇐ either, n ⇐ 0
f ⇐ 1, p0 ⇐ θ + δ, p1 ⇐ θ − δ
loop � returnd(n) on break

generate sample execution pathσ starting ins
if M[π], σ |= ρ then

f ⇐ f · p1

p0

else
f ⇐ f · 1−p1

1−p0

α0 ⇐ 1
1+γ/f , α1 ⇐ 1

γ+f

if α0 < α1 then
d ⇐ true

else ifα1 < α0 then
d ⇐ false

else
d ⇐ either

α̌ = min(α0, α1)
if max(α̌, γα̌) < 1

2
then

if α̌ < α(n) then
α(n+1) ⇐ α̌, d(n+1) ⇐ d

else ifα̌ = α(n) andd 6= d(n) then
α(n+1) ⇐ α(n), d(n+1) ⇐ either

else
α(n+1) ⇐ α(n), d(n+1) ⇐ d(n)

else
α(n+1) ⇐ α(n), d(n+1) ⇐ d(n)

n ⇐ n + 1

propertyPr≥θ(ρ), so we can use the sequential probability
ratio test with probability threshold̃θ = 1

2
to compareπ and

π′.
Algorithm 3 shows the procedure for doing the plan com-

parison. Note that this algorithm assumes that we reuse sam-
ples generated in verifying each plan (Algorithm 2).

Domain Independent Plan Repair
During plan verification, we generate a set of sample ex-
ecution pathsσσσ = {σ1, . . . , σn}. Given a goal condition
φ = Pr≥θ(ρ), we verify the path formulaρ over each sam-
ple pathσi. We denote the set of sample paths over which
ρ holdsσσσ+, and the set of paths over whichρ does not hold
σσσ−. The sample paths inσσσ− provide information on how
a plan can fail. We can use this information to guide plan
repair without relying on specific domain knowledge.

In order to repair a plan for goal conditionφ = Pr≥θ(ρ),
we need to lower the probability of paths not satisfyingρ. A
negative sample execution path

σ−
i = si0

ti0,ei0
−→ si1

ti1,ei1
−→ . . .

ti,m−1,ei,m−1

−→ sim

is evidence showing how a plan can fail to achieve the goal
condition. We could, conceivably, improve a plan by mod-
ifying it so that it breaks the sequence of states and events
along a negative sample path.

Algorithm 3 Procedure returning the better of two plans.

BETTER-PLAN (π, π′)
n ⇐ min(|bbb|, |bbb′|)
f ⇐ 1, p0 ⇐ 1

2
+ δ, p1 ⇐ 1

2
− δ

for all i ∈ [1, n] do
if bi ∧ ¬b′i then

f ⇐ f · p1

p0

else if¬bi ∧ b′i then
f ⇐ f · 1−p1

1−p0

α0 ⇐ 1
1+1/f , α1 ⇐ 1

1+f

if α0 ≤ α1 then
return π � confidence1 − α0

else
return π′

� confidence1 − α1

Algorithm 4 shows a generic procedure for plan repair.
First, a state is non-deterministically selected from the set of
states that occur along some negative sample path. Given a
state, we select an alternative action for that state and return
the modified plan. The sample paths help us focus on the rel-
evant parts of the state space when considering a repair for a
plan. The number of states and alternative actions to choose
from can still be quite large. For satisfactory performance,
it is therefore important to make an informed choice. In the
next section we introduce a GSMP domain model, and we
present preliminary work on using the added domain infor-
mation to further focus the search for a satisfactory plan.

Algorithm 4 Generic non-deterministic procedure for re-
pairing a plan.

REPAIR-PLAN (π)
S− ⇐ set of states occurring inσσσ−

s ⇐ some state inS−

a ⇐ some action inEa \ π(s)
π′ ⇐ π, but with the mapping ofs to a
return π′

Improved Search Control
So far we have presented a framework for generating poli-
cies for discrete event system without making any assump-
tions regarding the system model. We now show how we can
use GSMPs to model concurrency, as well as uncertainty in
action and event duration. We also present some techniques
for making informed repair decisions.

GSMP Domain Model
The essential dynamical structure of a discrete event system
is captured by a GSMP (Glynn 1989). A GSMP has the
following components:

• A finite setS of states.

• A finite setE of events.

• For each states ∈ S, a setE(s) ⊂ E of events enabled in
s.
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• For each pair〈s, e〉 ∈ S×E(s), a probability distribution
p(s′; s, e) over S giving the probability of the next state
beings′ if evente triggers in states.

• For each evente, a cumulative probability distribution
functionF (t; e), s.t.F (0; e) = 0, giving the probability
thate has triggeredt time units after it was last enabled.

As before, we divide the set of events into two disjoint sets
Ea andEe. The null-actionǫ is enabled in every state.

Consider the exogenous events move-taxi and return-taxi
of the example domain. We can associate an exponential
trigger time distribution,E( 1

40
), with move-taxi meaning

that a taxi is requested on average every40 minutes. A uni-
form distribution,U(10, 20), for return-taxi means that each
request can take between10 and20 minutes. The move-taxi
event is enabled in states where the taxi is idle at the airport,
while the return-taxi event is enabled in states where the taxi
is moving without us in it. These events have determinis-
tic outcome, i.e. they always cause the same state transitions
when triggered. The load-airplane action (Figure 2) is an
example of a controllable event with probabilistic outcome.

The dynamics of a GSMP is best described in terms of
discrete event simulation (Shedler 1993). We associate a
real-valued clockc(e) with each evente ∈ E that indicates
the time remaining untile is scheduled to occur. The sys-
tem starts in some initial states with eventsE(s) enabled.
For each enabled evente ∈ E(s), we sample a duration ac-
cording to the cumulative distribution functionF (t; e) and
setc(e) to the sampled value. Lete∗ be the event inE(s)
with the shortest duration, and letc∗ = c(e∗). The event
e∗ becomes the triggering event ins. Whene∗ triggers, we
sample a next states′ according to the probability distribu-
tion p(s′; s, e∗). Update the clock for each evente ∈ E(s′)
enabled in the next state as follows:

• If e ∈ E(s) \ {e∗}, then subtractc∗ from c(e).

• If e 6∈ E(s) \ {e∗}, then sample a new duration according
to the cumulative distribution functionF (t; e) and setc(e)
to the sampled value.

The first condition highlights the fact that GSMPs are non-
Markovian, as the durations for events are not independent
of the history. The system evolves by repeating the process
of finding the triggering event in the current state, and updat-
ing clock values according to the scheme specified above.

Consider the example problem. In the initial state, the
exogenous event move-taxi(msp-taxi) is enabled. Say that
the initial clock value for this event is3.6 minutes. The ac-
tion of choice in the initial state is load-taxi(pgh-taxi, CMU),
which has a fixed delay of1, so in this case the triggering
event in the initial state is the load-taxi action. The event
move-taxi(msp-taxi) is still enabled in the following state,
so instead of sampling a new duration for the event, we just
decrement its clock value by1 (the time spent in the previous
state). We now sample a duration for the action drive(pgh-
taxi, CMU, pgh-airport). The delay distribution for this ac-
tion is U(20, 40), and say in this case the trip to the airport
is scheduled to take25 minutes. The move-taxi event now
has the shortest duration and triggers after2.6 minutes. This
means that in the next state the Pittsburgh taxi is scheduled

to arrive at the airport in22.4 minutes. This illustrates how
easily concurrent events and actions with varying duration
are handled in a GSMP framework.

Heuristic Plan Repair
We can take advantage of information obtained through plan
verification and the structure provided by a GSMP domain
model to focus the repair of an unsatisfactory plan. To be-
gin with, when choosing an alternative action for states, we
only need to consider the actions inE(s), which typically
is a much smaller set thanEa. Knowing the underlying dy-
namical model of the system we are considering also helps
us choose repair actions in a more informed manner.

As before, consider the negative sample execution paths
σσσ−. We can view a state-event-state triple〈sij , eij, si,j+1〉
along a negative sample pathσ−

i as apossible bug. To re-
pair the current plan we want to eliminate bugs, and we can
do so for a bug〈s, e, s′〉 by preemptinge in s (i.e. planning
an action ins likely to trigger beforee), attempt to avoid
s altogether, or plan the action assigned tos in a predeces-
sor tos thereby giving the action more time to trigger. The
last repair takes advantage of the GSMP structure of the do-
main. Each negative sample path can contain multiple pos-
sible bugs, and each bug can appear in more than one nega-
tive sample path or multiple times along the same path. The
problem then becomes to select which bug to work on, and
given a bug, select a repair.

To rank possible bugs, we assign a real value to each bug.
The value of a bugb = 〈s, e, s′〉 for a specific sample path
is given by

v(b; σ−
i ) = min

j

{

−γm−j−1 b = 〈sij , eij, si,j+1〉
0 otherwise .

We can think of this in terms of utility, where we assign a
utility of −1 to the last state along a negative sample path,
and propagate the utility backwards along the path with dis-
count factorγ. The value of a bug〈s, e, s′〉 is the value of
the states′. If a bug occurs more than once along a path, the
bug gets the minimum value over the path. To combine the
value of a bug from multiple sample paths, we add the value
of the bug over all negative sample paths:

v(b;σσσ−) =
∑

i

v(b; σ−
i )

This gives us a real value for each bug, and we select the bug
with the lowest value.

Returning to our example problem, we have already said
that the initial plan for our example problem can be veri-
fied not to satisfy the goal condition. The actual probabil-
ity of success can be estimated independently by sampling,
and is approximately0.77. Obtaining an accurate probabil-
ity estimate is costly, however, so we never actually com-
pute any probability estimates during planning. Given the
sample execution paths generated during plan verification,
we can compute the value of the bugs encountered. For a
particular verification run, the worst bug is the event lose-
package(msp-airport) causing the package to get lost from
the state where the package and the plane are at the Min-
neapolis airport, the Minneapolis taxi is moving, and the
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Pittsburgh taxi is at the airport (value−13). We choose this
bug and try to repair it. The bug is that the package gets lost
while we are waiting for the taxi at the Minneapolis airport.
We can preempt the lose-package(msp-airport) event by ei-
ther loading the plane or storing the package at the airport.
Once we preempt the event, we should plan a path from the
state we anticipate to reach with the planned action to a state
where the package is at Honeywell (goal state). If, for ex-
ample, we choose to store the package, we should plan to
retrieve the package once the taxi arrives, or else the pack-
age will remain in storage indefinitely. We can find such
a path using a heuristic deterministic planner, much in the
same way as we expect the initial plan to be generated. We
choose the repair action with the shortest path to a goal state,
which in this case is the store action (not the load-plane ac-
tion).

We now have a new (hopefully improved) plan that we
need to verify. Running the verification algorithm on this
plan reveals that it still does not satisfy the goal condition.
The error probability over time when verifying the second
plan is shown in Figure 3(b). The actual success probabil-
ity (0.89) is close to the threshold (0.9), so it takes longer
time and more samples (963 in this case) to reach a high
confidence than for the initial plan. This demonstrates an in-
teresting feature of a sequential test, viz. that it adapts to the
difficulty of the problem. When comparing the two plans,
we find with high confidence that the second plan is better
than the first plan. For the verification data generated during
the runs depicted in Figures 3(a) and 3(b), the confidence is
0.94 when usingδ = 0.05.

Because we determine with high confidence that the new
plan is better than the old one, we select the new plan and try
to repair it. The worst bug is now that the package is lost at
the Pittsburgh airport after discovering that the plane is full
(value−56). We can avoid losing the package by storing
it at the airport, but there is no way to get the package to
Honeywell once the plane is full so this repair action can be
determined to be fruitless. Since there are no feasible repairs
for the worst bug, we instead turn to the second worst bug,
which in this case is that the plane is discovered to be full
when we attempt to load the package at the Pittsburgh airport
(value−47.75). The only way to disable the harmful effect
of the load-airplane action is to make a reservation before
leaving CMU. Making the suggested change to the current
plan, we obtain a new plan that passes the verification phase,
so we return that plan as a solution. We can independently
verify through sampling that the success probability of the
final plan is0.99.

Discussion
We have presented a framework for policy generation in
continuous-time stochastic domains. Our planning algo-
rithm makes practically no assumptions regarding the com-
plexity of the domain dynamics, and we can use it to gen-
erate stationary policies for any discrete event system that
we can generate sample execution paths for. By adopting
a GSMP domain model, we can naturally represent concur-
rent actions and events as well as uncertainty in the dura-
tion and outcome of these. While most previous approaches

to probabilistic planning requires time to be discretized,we
work with time as a continuous quantity, thereby avoiding
the state-space explosion that comes from using discrete-
time models for domains that are inherently continuous. To
efficiently handle continuous time, we rely on sampling-
based techniques. We use CSL as a formalism for spec-
ifying goal conditions, and we have presented an anytime
algorithm based on sequential acceptance sampling for veri-
fying whether a plan satisfies a given goal condition. Our ap-
proach to plan verification differs from previous simulation-
based algorithms for probabilistic plan verification (Blythe
1994; Lesh, Martin, & Allen 1998) in that we avoid ever
calculating any probability estimates. Instead we use ef-
ficient statistical hypothesis testing techniques specifically
designed to determine whether the probability of some prop-
erty holding is above a target threshold. We believe that the
verification algorithm in itself is a significant contribution to
the field of probabilistic planning.

Our approach to probabilistic planning falls into the Gen-
erate, Test and Debug paradigm, and we have presented
some initial work on how to debug and repair stationary
policies for continuous-time stochastic domains modeled as
GSMPs. Our algorithm utilizes information from the verifi-
cation phase to guide plan repair. In particular, we are using
negative sample execution paths to determine what can go
wrong, and then try to modify the current plan so that the
negative behavior is avoided. Our planning framework is not
tied to any particular plan repair technique, however, and our
work on plan repair presented in this paper is only prelim-
inary. As with any planning, the key to focused search is
good search control heuristics. Information from simulation
traces helps us focus the repair effort on relevant parts of the
state space. Still, we have not fully addressed the problem
of choosing among possible plan repairs. We are currently
ignoring positive sample execution paths, but these could
contain valuable information useful for guiding the planner
towards satisfactory plans. Timing information in sample
execution paths is also ignored for now. We could use the
sampled holding times to better select which action to en-
abled for a state. We may think that an event will trigger
after an action just by looking at the delay distributions, but
the event may often trigger before the action in reality due to
history dependence. The information contained in the sam-
ple execution paths could reveal this to us. We plan to ad-
dress these issues in future work, as well as the problem of
comparing and repairing plans when the goal is a conjunc-
tion of probabilistic statements.

We have limited our attention to stationary policies in
this paper. Because we are considering finite-horizon goal
conditions, there will be cases when a stationary policy is
not sufficient and we need to consider non-stationary poli-
cies,πns : S × R → Ea, in order to find a solution. The
domain of a non-stationary policy for continuous-time do-
mains is infinite (and even uncountable), so we would first
need to find a compact representation for such policies in
order to handle them efficiently. Furthermore, the hold-
ing times in the sample execution paths must be considered
when debugging a plan. This means that seeing two iden-
tical bugs becomes highly unlikely, and any effective bug
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Figure 3: Probability of error over time, usingδ = 0.01 andγ = 1, for the verification of (a) the initial plan, (b) the plan storing
the package at the Minneapolis airport when the taxi is not there, and (c) the plan making a reservation before leaving CMU.
The decision in (a) and (b)—except in the very beginning for some error bounds above0.4—is that the goal condition is not
satisfied, while in (c) the decision is that the goal condition is satisfied.

analysis technique would have to generalize the informa-
tion in the sample paths. Thrun (2000) suggests using near-
est neighbor learning for handling continuous-space Markov
decision processes (with partial observability), and a similar
approach may prove to be useful for handling non-stationary
policies in continuous-time domains. It should be noted that
the verification algorithm does not rely on the policy to be
stationary. In fact, it could be used without modification
to verify models with continuous state variables and partial
observability. All we need is a way to generate sample ex-
ecution paths. The challenge to extend our planning frame-
work to non-stationary policies, continuous state variables,
and partial observability lies in developing efficient repair
techniques to handle the added complexity.

We are also looking into extending the planning frame-
work to decision-theoretic planning. Work in this direc-
tion has already begun within the CIRCA framework (Ha
& Musliner 2002). Plan assessment is more difficult in a
decision-theoretic framework. The value of a sample execu-
tion path is no longer simply true or false, but a real value
drawn from an unknown distribution. The current approach
is to estimate the expected utility of a plan using sampling,
but the number of samples tends to be high. We are cur-
rently considering the use of non-parametric statistical hy-
pothesis testing techniques to make the decision-theoretic
planner more efficient.
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